13 research outputs found

    Terrestrial ecological risk analysis via dietary exposure at uranium mine sites in the Grand Canyon watershed (Arizona, USA)

    Get PDF
    The U.S. Department of the Interior recently included uranium (U) on a list of mineral commodities that are considered critical to economic and national security. The uses of U for commercial and residential energy production, defense applications, medical device technologies, and energy generation for space vehicles and satellites are known, but the environmental impacts of uranium extraction are not always well quantified. We conducted a screening-level ecological risk analysis based on exposure to miningrelated elements via diets and incidental soil ingestion for terrestrial biota to provide context to chemical characterization and exposures at breccia pipe U mines in northern Arizona. Relative risks, calculated as hazard quotients (HQs), were generally low for all biological receptor models. Our models screened for risk to omnivores and insectivores (HQs\u3e1) but not herbivores and carnivores. Uranium was not the driver of ecological risk; arsenic, cadmium, copper, and zinc were of concern for biota consuming ground-dwelling invertebrates. Invertebrate species composition should be considered when applying these models to other mining locations or future sampling at the breccia pipe mine sites. Dietary concentration thresholds (DCTs) were also calculated to understand food concentrations that may lead to ecological risk. The DCTs indicated that critical concentrations were not approached in our model scenarios, as evident in the very low HQs for most models. The DCTs may be used by natural resource and land managers as well as mine operators to screen or monitor for potential risk to terrestrial receptors as mine sites are developed and remediated in the future

    Variables affecting penetrance of gastric and duodenal phenotype in familial adenomatous polyposis patients

    No full text
    Abstract Background Patients with familial adenomatous polyposis (FAP) frequently undergo colectomy to reduce the 70 to 90% lifetime risk of colorectal cancer. After risk-reducing colectomy, duodenal cancer and complications from duodenal surgeries are the main cause of morbidity. Our objective was to prospectively describe the duodenal and gastric polyp phenotype in a cohort of 150 FAP patients undergoing pre-screening for a chemoprevention trial and analyze variables that may affect recommendations for surveillance. Methods Individuals with a diagnosis of FAP underwent prospective esophagogastroduodenoscopy using a uniform system of mapping of size and number of duodenal polyps for a 10 cm segment. Gastric polyps were recorded as the total number. Results The distribution of the count and sum diameter of duodenal polyps were statistically different in two genotype groups, those with APC mutations associated with classic FAP had a greater count (median 17) and sum diameter of polyps (median 32 mm) than those with APC mutations associated with attenuated FAP (median count 4 and median sum diameter of 7 mm) (p < 0.0001). The number of gastric polyps did not differ based on genotype (p = 0.67) but advancing age correlated with severity of gastric polyposis (p = 0.019). Spigelman (modified) staging of II or greater was found in 88% of classic FAP patients and 48% attenuated FAP patients. Examples of severe and mild upper GI phenotype are observed in patients with identical APC mutations, showing that the APC mutation location is not absolutely predictive of an upper GI phenotype. Conclusions Most FAP patients have duodenal and gastric polyps which become more prevalent and advanced with age. Standard upper endoscopic surveillance is recommended based on personal history independent of APC mutation location. Trial registration NCT 01187901 registered August 24, 2010, prospective to enrollment
    corecore